skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Vonich, P_Trent"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The traditional method for estimating weather forecast sensitivity to initial conditions uses adjoint models, which are limited to short lead times due to linearization around a control forecast. The advent of deep‐learning frameworks enables a new approach using backpropagation and gradient descent to iteratively optimize initial conditions, minimizing forecast errors. We apply this approach to the June 2021 Pacific Northwest heatwave using the GraphCast model, yielding over 90% reduction in 10‐day forecast errors over the Pacific Northwest. Similar improvements are found for Pangu‐Weather model forecasts initialized with the GraphCast‐derived optimal, suggesting that model error is an unimportant part of the perturbations. Eliminating small scales from the perturbations also yields similar forecast improvements. Extending the length of the optimization window, we find forecast improvement to about 23 days, suggesting atmospheric predictability at the upper end of recent estimates. 
    more » « less